

## FEATURES

- High sensitivity: 80 mW Nominal operating power (Single side stable 3-12 V type)
- Surge voltage withstand: 1500 V FCC Part 68
mm inch


## SPECIFICATIONS

| Contact |  |  |
| :---: | :---: | :---: |
| Arrangement |  | 2 Form C |
| Initial contact resistance, max. (By voltage drop 6 V DC 1 A) |  | $50 \mathrm{~m} \Omega$ |
| Contact material |  | Gold-clad silver |
| Rating | Nominal switching capacity (resistive load) | 1 A 30 V DC, 0.5 A 125 V AC |
|  | Max. switching power (resistive load) | $30 \mathrm{~W}, 62.5 \mathrm{VA}$ |
|  | Max. switching voltage | 110 V DC, 125 V AC |
|  | Max. switching current | 1 A |
|  | Min. switching capacity 米1 | $10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC |
| Nominal operating power | Single side stable | $\begin{gathered} 80 \mathrm{~mW}(3 \mathrm{to} 12 \mathrm{~V} \text { DC) } \\ 140 \mathrm{~mW}(24 \mathrm{~V} \mathrm{DC}) \\ 260 \mathrm{~mW}(48 \mathrm{~V} \mathrm{DC}) \end{gathered}$ |
|  | 1 coil latching | $\begin{gathered} 55 \mathrm{~mW}(3 \text { to } 12 \mathrm{~V} \text { DC) } \\ 100 \mathrm{~mW}(24 \mathrm{~V} \text { DC) } \\ \hline \end{gathered}$ |
|  | 2 coil latching | $\begin{gathered} 110 \mathrm{~mW}(3 \text { to } 12 \mathrm{~V} \text { DC) } \\ 200 \mathrm{~mW}(24 \mathrm{~V} \text { DC) } \end{gathered}$ |
| Expected life (min. operations) | Mechanical (at 180 cpm ) | $10^{8}$ |
|  | Electrical (at 20 cpm ) | 1 A 30 V DC resistive load $2 \times 10^{5}$ |
|  |  | $\begin{gathered} \text { 0.5 A } 125 \text { V AC resistive load } \\ 10^{5} \end{gathered}$ |

## Note:

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

## Characteristics

| Initial insulation resistance*1 |  |  | Min. 1,000 M $\Omega$ (at 500 V DC) |
| :---: | :---: | :---: | :---: |
| Initial breakdown voltage | Between open contacts |  | 750 Vrms for 1 min . (Detection current: 10 mA ) |
|  | Between contact and coil |  | 1,000 Vrms for 1 min . (Detection current: 10 mA ) |
|  | Between contact sets |  | 1,000 Vrms for 1 min . (Detection current: 10 mA ) |
| FCC surge voltage between open contacts |  |  | 1,500 V |
| Temperature rise*2 (at $20^{\circ} \mathrm{C}$ ) |  |  | Max. $50^{\circ} \mathrm{C}$ |
| Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$ ) |  |  | Max. 4 ms (Approx. 2 ms ) [Max. 4 ms (Approx. 2 ms )] |
| Release time [Reset time]*4 (at $20^{\circ} \mathrm{C}$ ) |  |  | Max. 4 ms (Approx. 1 ms ) [Max. 4 ms (Approx. 2 ms )] |
| Shock resistance |  | Functional*5 | Min. $490 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$ |
|  |  | Destructive*6 | Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ |
| Vibration resistance |  | Functional*7 | $176.4 \mathrm{~m} / \mathrm{s}^{2}$ \{18G\}, 10 to 55 Hz at double amplitude of 3 mm |
|  |  | Destructive | $294 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 5 mm |
| Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) |  | Ambient temperature | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$ |
|  |  | Humidity | 5 to 85\% R.H. |
| Unit weight |  |  | Approx. 2 g .071 oz |

## Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Measurement at same location as "Initial breakdown voltage" section.
${ }^{2}$ By resistive method, nominal voltage applied to the coil; contact carrying current: 1 A.
${ }^{3}$ Nominal voltage applied to the coil, excluding contact bounce time.
${ }^{4}$ Nominal voltage applied to the coil, excluding contact bounce time without diode.
${ }^{4}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.
" 6 Half-wave pulse of sine wave: 6 ms .
${ }^{7} 7$ Detection time: $10 \mu \mathrm{~s}$.
* Refer to 4. Conditions for operation, transport and storage mentioned in Cautions for use (Page 178).


## ORDERING INFORMATION

| Contact arrangement | Operating function | Terminal shape | Coil voltage(DC) |
| :---: | :---: | :---: | :---: |
| 2:2 Form C | Nil: Single side stable <br> L: 1 coil latching <br> L2: 2 coil latching | Nil: Standard PC board terminal H: Self-clinching terminal | $\begin{gathered} 3,4.5,5,6,9,12, \\ 24,48^{*} V \end{gathered}$ |

*48 V coil type: Single side stable only
Note: AgPd stationary contact types available for high resistance against contact sticking. When ordering, please add suffix"-3"like TF2-12V-3.

## TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ )

## 1. Single side stable

| Part No. |  | Nominal voltage, V DC | Pick-up voltage, V DC (max.) | Drop-out voltage, V DC (min.) | Nominal operating current, $m A( \pm 10 \%)$ | Coil resistance, $\Omega$ ( $\pm 10 \%$ ) | Nominal operating power, mW | Max. allowable voltage, V DC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard PC board terminal | Self-clinching terminal |  |  |  |  |  |  |  |
| TF2-3 V | TF2-H-3 V | 3 | 2.25 | 0.3 | 26.7 | 112.5 | 80 | 4.5 |
| TF2-4.5 V | TF2-H-4.5 V | 4.5 | 3.38 | 0.45 | 17.8 | 253 | 80 | 6.7 |
| TF2-5 V | TF2-H-5 V | 5 | 3.75 | 0.5 | 16 | 312.5 | 80 | 7.5 |
| TF2-6 V | TF2-H-6 V | 6 | 4.5 | 0.6 | 13.3 | 450 | 80 | 9 |
| TF2-9 V | TF2-H-9 V | 9 | 6.75 | 0.9 | 8.9 | 1,012.5 | 80 | 13.5 |
| TF2-12 V | TF2-H-12 V | 12 | 9 | 1.2 | 6.7 | 1,800 | 80 | 18 |
| TF2-24 V | TF2-H-24 V | 24 | 18 | 2.4 | 5.8 | 4,100 | 140 | 36 |
| TF2-48 V | TF2-H-48 V | 48 | 36 | 4.8 | 5.4 | 8,860 | 260 | 57.6 |

## 2. 1 Coil latching

| Part No. |  | Nominal voltage, V DC | Set voltage, <br> V DC (max.) | Reset voltage, <br> V DC (max.) | Nominal operating current, $m A( \pm 10 \%)$ | Coil resistance, $\Omega$ ( $\pm 10 \%$ ) | Nominal operating power, mW | Max. allowable voltage, V DC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard PC board terminal | Self-clinching terminal |  |  |  |  |  |  |  |
| TF2-L-3 V | TF2-L-H-3 V | 3 | 2.25 | 2.25 | 18.3 | 163.6 | 55 | 4.5 |
| TF2-L-4.5 V | TF2-L-H-4.5 V | 4.5 | 3.38 | 3.38 | 12.2 | 368.2 | 55 | 6.7 |
| TF2-L-5 V | TF2-L-H-5 V | 5 | 3.75 | 3.75 | 11 | 454.5 | 55 | 7.5 |
| TF2-L-6 V | TF2-L-H-6 V | 6 | 4.5 | 4.5 | 9.2 | 654.5 | 55 | 9 |
| TF2-L-9 V | TF2-L-H-9 V | 9 | 6.75 | 6.75 | 6.1 | 1,472 | 55 | 13.5 |
| TF2-L-12 V | TF2-L-H-12 V | 12 | 9 | 9 | 4.6 | 2,618 | 55 | 18 |
| TF2-L-24 V | TF2-L-H-24 V | 24 | 18 | 18 | 4.2 | 5,760 | 100 | 36 |

## 3. 2 Coil latching

| Part No. |  | Nominal voltage, V DC | Set voltage, <br> V DC (max.) | Reset voltage, <br> V DC (max.) | Nominal operating current,$\mathrm{mA}( \pm 10 \%)$ | Coil resistance, $\Omega$ ( $\pm 10 \%$ ) | Nominal operating power, mW | Max. allowable voltage, V DC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard PC board terminal | Self-clinching terminal |  |  |  |  |  |  |  |
| TF2-L2-3 V | TF2-L2-H-3 V | 3 | 2.25 | 2.25 | 36.7 | 81.8 | 110 | 4.5 |
| TF2-L2-4.5 V | TF2-L2-H-4.5 V | 4.5 | 3.38 | 3.38 | 24.4 | 184.1 | 110 | 6.7 |
| TF2-L2-5 V | TF2-L2-H-5 V | 5 | 3.75 | 3.75 | 22 | 227.3 | 110 | 7.5 |
| TF2-L2-6 V | TF2-L2-H-6 V | 6 | 4.5 | 4.5 | 18.3 | 327.3 | 110 | 9 |
| TF2-L2-9 V | TF2-L2-H-9 V | 9 | 6.75 | 6.75 | 12.2 | 736.4 | 110 | 13.5 |
| TF2-L2-12 V | TF2-L2-H-12 V | 12 | 9 | 9 | 9.2 | 1,309 | 110 | 18 |
| TF2-L2-24 V | TF2-L2-H-24 V | 24 | 18 | 18 | 8.3 | 2,880 | 200 | 36 |

## Notes:

1. Specified value of the pick-up, drop-out, set and reset voltage is with the condition of square wave coil pulse.
2. Standard packing: Tube: 50 pcs.; Case; 1,000 pcs.
3. In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.
4. AgPd stationary contact types available for high resistance against contact sticking. When ordering, please add suffix "-3" like TF2-12V-3.

DIMENSIONS

## Standard PC board terminal



Self-clinching terminal


General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Copper-side view)


Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable
(Deenergized condition)
1-coil latching
(Reset condition)

2-coil latching (Reset condition)

*Orientation stripe typical-located on top of relay

## REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TF2-12V, 10 pcs.

4.-(1) Electrical life (DC load)

Tested sample:TF2-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm
Change of pick-up and drop-out voltage


Change of contact resistance

5. Coil temperature rise

Tested sample: TF2-xxV
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

8. Distribution of pick-up and drop-out voltage Tested sample: TF2-12V, 50 pcs.

4.-(2) Electrical life (AC load)

Tested sample: TF2-12V, 6 pcs
Condition: 0.5 A 125 V AC resistive load, 20 cpm
Change of pick-up and drop-out voltage


Change of contact resistance

7. Set/reset time characteristics Tested sample: TF2-L2-12V, 5 pcs.

6. Operate/release time characteristics Tested sample: TF2-12V, 5 pcs.

9. Distribution of set and reset voltage Tested sample: TF2-L2-12V, 20 pcs.

10. Ambient temperature characteristics Tested sample:TF2-12V, 5 pcs.

11. Distribution of contact resistance Tested sample: TF2-12V, 30 pcs. (30, $\times 4$ contacts)

12.-(1) High-frequency characteristics

Tested sample: TF2-xxV
Isolation characteristics

13.-(1) Malfunctional shock (single side stable)

Tested sample:TF2-12V, 6 pcs

14.-(1) Influence of adjacent mounting


$\longrightarrow$ Inter-relay distance $\boldsymbol{\ell}, \mathrm{mm}$ inch
12.-(2) High-frequency characteristics Tested sample: TF2-xxV Insertion loss characteristics

12.-(3) High-frequency characteristics Tested sample: TF2-xxV
V.S.W.R.

13.-(2) Malfunctional shock (latching) Tested sample:TF2-L-12V, 6 pcs.

14.-(2) Influence of adjacent mounting

14.-(3) Influence of adjacent mounting

15. Actual load test

Tested sample: TF2-12V
( 35 mA 48 V DC wire spring relay load)

Circuit


Change of contact resistance


## For Cautions for Use, see Relay Technical Information

## T-Series Relays

## T series Cautions for Use

## 1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than $5 \%$.
However, check it with the actual circuit since the characteristics may be slightly different.
The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

## 2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

## 3. External magnetic field

Since T-Series relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field.
Avoid using the relay under that conditions.

## 4. Conditions for operation, transport

 and storage1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:

## TX(-SMD)/TX-D(-SMD)/TQ-SMD

(1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$.
The temperature range is -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$ for the packaged relay.

## TX-S(-SMD)

(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$. for the pack-age/non-package relay.

## TQ/TF/TN/TK

(1) Temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
The temperature range is -40 to $+60^{\circ} \mathrm{C}$ -40 to $+140^{\circ} \mathrm{F}$ for the packaged relay.
(2) Humidity: 5 to $85 \%$ R.H.
(Avoid freezing and condensation.)
The humidity range varies with the temperature.
Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for usage,transport, and storage:



## 2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature, high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$.
This causes problems such as sticking of movable parts or operational time lags. 4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

## 5. M.B.B. contact relays

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully. If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

## 6. Packing style

1) Tube orientation for both standard through hole terminal type (including selfclinching type) and surface-mount terminal type.
The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.
Take note of the relay orientation when mounting relays on the printed circuit board.

Standard through hole terminal type (including self-clinching type)
ex) TX Relays


(2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions

1. TX/TX-D/TX-S-SMD Relays
(i) SA type

(ii) SL type

(iii) SS type

2. TQ-SMD Relays
(i) SA type

(ii) SL, SS type

(2) Dimensions of plastic reel
(i) TX/TX-D/TX-S-SMD Relays
mm inch

(ii) TQ-SMD Relays
mm inch


## 7. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

1) TX(-SMD)/TX-D(-SMD)/TQ/TF

Chucking pressure in the direction A :
$4.9 \mathrm{~N}\{500 \mathrm{~g}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
TX(-SMD)/TX-D(-SMD)/TX-S(-SMD)


TQ
TF


Please chuck the سाIId portion.
Avoid chucking the center of the relay.
2) $T Q-S M D$

Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Chucking pressure in the direction B:
$9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Mountimg pressure in the direction C : 9.8 N \{1 kg\}or less


Please chuck the TسIla portion.

Avoid chucking the center of the relay.
3) TN

Chucking pressure in the direction A: $9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Chucking pressure in the direction C : $4.9 \mathrm{~N}\{500 \mathrm{~g}\}$ or less

|  |
| :---: |

Please chuck the Wسाled portion.
Avoid chucking the center of the relay.
4) TK

Chucking pressure* in the direction A: $9.8 \mathrm{~N}\{1 \mathrm{~kg}\}$ or less
Chucking pressure* in the direction B:
$29.4 \mathrm{~N}\{3 \mathrm{~kg}\} \mathrm{or}$ less
Chucking pressure* in the direction C : 9.8 $\mathrm{N}\{1 \mathrm{~kg}\}$ or less


Please chuck the एسImata portion.
Avoid chucking the center of the relay.
*Value of chucking pressure is shown by the value of weight pressed on the portion( 4 mm dia.)
8. Soldering

1) Preheat according to the following conditions.

| Temperature | $100^{\circ} \mathrm{C} 212^{\circ} \mathrm{F}$ or less |
| :--- | :--- |
| Time | Within approx. 1 minute |

When soldering standard PC board terminals or self-clinching terminals, soldering should be done at $250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 5 sec.
2) When soldering surface-mount terminals, the following conditions are recommended.
(1) IR (Infrared reflow) soldering method

(2) Vapor phase soldering method

$\mathrm{T}_{1}=90^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C} 194^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F} \quad \mathrm{t}_{1}=90 \mathrm{sec}$. to 120 sec . $\mathrm{T}_{2}=180^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C} 356^{\circ} \mathrm{F}$ to $392^{\circ} \mathrm{F} \quad \mathrm{t}_{2}=60 \mathrm{sec}$. or less $\mathrm{T}_{3}=215^{\circ} \mathrm{C} 419^{\circ} \mathrm{F}$ or less
(3) Soldering iron method

Tip temperature: $280^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C} 536^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{C}$
Wattage: 30 to 60 W
Soldering time: within 5 sec.
(4) Other soldering methods

Check mounting conditions before using other soldering methods (hot-air, hot plate, pulse heater, etc.).

## Remarks

The temperature profile indicates the temperature of the soldered terminal on the surface of the PC board.
The ambient temperature may increase excessively.
Check the temperature under mounting conditions.
The conditions for the infrared reflow soldering apply when preheating using the VPS method.

## 9. Cleaning

In automatic cleaning, cleaning with the boiling method is recommended. Avoid ultrasonic cleaning which subject the relay to high frequency vibrations. It may cause the contacts to stick.
It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

## 10. Others

1) If in error the relay has been dropped, the appearance and characteristics should be checked before use without fail. 2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1986 standard
(temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $85 \%$ ). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase,ambient conditions and other factors.
2) For secure operations, the voltage applied to the coil should be nominal voltage. In addition, please note that pick-up and drop-out voltage will vary according to the ambient temperature and operation conditions.
3) Latching relays are shipped from the factory in the reset state. A shock to the relay during shipping or installation may cause it to change to the set state.
Therefore, it is recommended that the relay be used in a circuit which initializes the relay to the required state (set or reset) whenever the power is turned on.
4) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay, causing functional damage. Avoid subjecting the relays to heavy loads, or strong vibration and shocks.
*Japanese Industrial Standards
